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Recently, expression profiling of breast carcinomas has revealed
gene signatures that predict clinical outcome, and discerned prog-
nostically relevant breast cancer subtypes. Measurement of the
degree of genomic instability provides a very similar stratification
of prognostic groups. We therefore hypothesized that these fea-
tures are linked. We used gene expression profiling of 48 breast
cancer specimens that profoundly differed in their degree of
genomic instability and identified a set of 12 genes that defines the
2 groups. The biological and prognostic significance of this gene
set was established through survival prediction in published data-
sets from patients with breast cancer. Of note, the gene expression
signatures that define specific prognostic subtypes in other breast
cancer datasets, such as luminal A and B, basal, normal-like, and
ERBB21, and prognostic signatures including MammaPrint® and
Oncotype DX, predicted genomic instability in our samples. This
remarkable congruence suggests a biological interdependence of
poor-prognosis gene signatures, breast cancer subtypes, genomic
instability, and clinical outcome.
' 2008 Wiley-Liss, Inc.
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Breast carcinomas are among the most frequent tumors in
women worldwide.1 The clinical course and disease free survival
times are extremely heterogeneous. This is why there have been
intensive efforts to introduce morphological, clinical and molecu-
lar markers for precise disease staging and prognostication over
the past decades.2 These markers include tumor size, grade and
stage, lymph node and hormone receptor status, expression of
growth factor receptors, DNA content, S-phase fraction and prolif-
erative activity, and, more recently, specific gene expression sig-
natures of poor prognosis.3–6 Quantitative measurement of the nu-
clear DNA content was the first attempt to understand the genetic
basis of the observed profound differences in prognostic profiles
of breast cancer. Large retrospective and prospective studies
showed that patients with tumors with large variability in the nu-
clear DNA content, i.e., aneuploidy, have a recurrence free sur-
vival rate that is about only half as long as the one for patients
with a diploid distribution.7,8 The strong association of nuclear
DNA content with disease free survival is independent of lymph
node status, and therefore reflects a tumor innate biological feature
that directly influences outcome. More recently, this ploidy-based
classification system has been refined to not only describe the sta-
tus quo of nuclear DNA content, i.e., diploid or aneuploid, but to
also appreciate the degree of genomic instability reflected as the
variability of the DNA content in the tumor cell population.9,10

Based on these data it appears that more than just the ploidy status
alone, but rather an inherent level of genomic instability (which
can be measured as a stemline scatter index) is associated with
prognosis. Extending these observations to mechanistic conclu-
sions, one could argue that the degree of plasticity of a tumor

genome provides the means to acquire a genetic and genomic
makeup that bestows the nimbleness required to successfully
negotiate the challenges of continuing selective pressure, and to
generate tumor cell populations that are best adapted to environ-
mental changes, including therapeutic interventions.

Numerous groups have used parallel gene expression profiling
to extract clinically relevant signatures from breast cancers with
considerable success.3–6,11,12 These gene expression signatures
also allowed identification of breast cancer subtypes, such as lumi-
nal A and B, basal, normal-like, and ERBB21, which harbor
prognostic significance as well.3,11,13,14 These signatures report-
edly carry prognostic information independent of lymph-node sta-
tus, but showed association with tumor grade, e.g. in the report by
van de Vijver et al.4 The same applies when measurements of the
nuclear DNA content and genomic instability were used for out-
come prediction, i.e., a strong correlation to histopathologic grad-
ing, yet no correlation to axillary node status.7,8,15,16 These simi-
larities, along with the fact that the Kaplan-Meier curves for
assessment of recurrence-free survival were essentially identical
when using either gene expression signatures or genomic instabil-
ity as nominal independent variables, provoked the assumption
that the two are connected. In order to determine the nature of this
connection, we formulated the following hypotheses: first, the
degree of genomic instability finds its reflection in (or is deter-
mined by) an aneuploidy-specific gene expression signature; sec-
ond, this signature is general in nature and therefore robust enough
to allow prediction of the clinical course in independent datasets;
and, third, breast cancer subtype specific gene expression signa-
tures of poor prognosis allow classification of our genomically sta-
ble and unstable tumors, hence connecting the two classification
systems in support of a biological relationship. These hypotheses
were tested by, first, gene expression profiling of 48 primary breast
carcinomas with defined patterns and degrees of genomic instabil-
ity; second, through classification of published and clinically
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annotated breast cancer datasets using our gene expression signa-
ture of genomic instability; and, third, by classification of our
datasets using other breast cancer prognostic genetic signatures,
including MammaPrint14,5 and Oncotype DX.12

Material and methods

Patient samples

Forty-eight patients with breast cancer were diagnosed and tu-
mor samples collected at the Karolinska Institute and Hospital,
Stockholm, Sweden, during 2000 and 2001 adhering to the guide-
lines of the local ethical review board. Clinical material was
collected from surgically removed tumors, diagnosed on H&E-
stained tissue sections at the Department of Oncology and Pathol-
ogy, Cancer Center Karolinska, and graded according to Elston.17

The clinical data are summarized in Table I. After surgery clinical
tissue was first used for touch preparation slides for quantitative
measurement of the nuclear DNA content before it was snap fro-
zen until further processing with TRIzol reagent (Invitrogen,
Carlsbad, CA) for DNA and RNA extraction. In addition, paraffin-

embedded specimens of the same tumors were used for histopa-
thology and immunohistochemistry.

Image cytometry

Image cytometry was performed on Feulgen-stained touch prep-
aration slides. The staining procedure, internal standardization,
and tumor cell selection were based on methods described previ-
ously.8 All DNA-values were expressed in relation to the corre-
sponding staining controls which were given the value 2c, denot-
ing the normal diploid DNA-content. The tumors were classified
as belonging to 3 groups: (i) diploid cases with a distinct peak in
the normal 2c region and no cells exceeding 5c, (ii) aneuploid
cases with a main peak different from 2c and a stemline scatter
index (SSI) below or equal 8.8, and (iii) aneuploid samples with a
varying numbers of cells (>5%) exceeding 5c (SSI above 8.8).
This novel classification system adheres to the parameters estab-
lished by Kronenwett et al.,9 who defined the SSI as a measure-
ment of clonal heterogeneity in the tumor cell population. In our
sample cohorts, 17 tumors were classified as diploid, genomically

TABLE I – SUMMARY OF CLINICAL AND EXPERIMENTAL PARAMETERS IN 17 DGS, 15 AGS, AND 16 AGU BREAST CARCINOMAS

Case Ploidy Age Size (mm) Elston Grade Histology Side Lymphnode
metastasis

Cyclin A
positivity

Surgery CGH cDNA array Subtype

D03 dGS 61 ND II ductal left 0/0 0% lumpectomy Yes Yes Normal-like
D05 dGS 83 30 II ductal right 0/3 2% mastectomy Yes Yes Normal-like
D07 dGS 41 18 II mucin left 0/11 6% lumpectomy Yes Yes Normal-like
D08 dGS 51 12 ND lobular right 0/8 1% mastectomy Yes Yes Normal-like
D09 dGS 48 253 20 II lobular left 0/0 1% mastectomy Yes Yes Luminal A
D10 dGS 83 45 II–III ductal left 3/7 3% mastectomy Yes No
D11 dGS 60 12 II ductal bilateral 0/ND 1% lumpectomy Yes No
D12 dGS 75 12 I tubular right 0/0 5% lumpectomy Yes Yes Luminal A
D13 dGS 86 10 ND lobular left 0/0 4% recurrent Yes Yes Luminal A
D14 dGS 86 26 I ductal right 4/6 3% lumpectomy Yes Yes Luminal A
D15 dGS 50 ND II lobular right 3/9 2% mastectomy Yes Yes Normal-like
D16 dGS 54 70 III lobular left 1/12 2% mastectomy Yes Yes Luminal A
D18 dGS 48 14 II ductal left 0/7 4% mastectomy Yes No
D19 dGS 62 20 I ductal right 0/3 8% lumpectomy No Yes Luminal A
D21 dGS 79 22 II ductal left 4/16 4% mastectomy Yes Yes Luminal A
D23 dGS 34 10 II ductal left 0/0 4% lumpectomy No Yes Luminal A
D25 dGS 71 12 I lobular ND 0/0 1% lumpectomy Yes Yes ERRB21
NP01 aGS 55 60 III ductal right 9/9 2% mastectomy Yes Yes Luminal A
NP02 aGS 62 11 I ductal right 0/23 6% mastectomy Yes Yes Luminal A
NP06 aGS 72 15 II ductal left 0/5 1% lumpectomy Yes Yes Luminal A
NP08 aGS 58 14 I ductal left 0/0 3% lumpectomy Yes Yes Normal-like
NP10 aGS 71 ND II Paget’s right 0/0 4% lumpectomy No Yes Normal-like
NP11 aGS 81 26 II ductal left 1/7 2% mastectomy Yes Yes Luminal A
NP12 aGS 62 601 15 I lobular right 2/7 6% mastectomy Yes Yes Luminal A
NP13 aGS 75 13 I ductal left 0/0 0% lumpectomy Yes Yes Luminal A
NP14 aGS 54 12 1 9 II ductal right 0/0 1% lumpectomy Yes Yes ERRB21
NP16 aGS 49 54 III ductal/lobular right 0/0 0% mastectomy No Yes ERRB21
NP17 aGS 52 14 II ductal right 0/6 8% mastectomy Yes Yes Luminal A
NP18 aGS 63 30 II ductal left 0/0 4% mastectomy No Yes ERRB21
NP19 aGS 54 10 II ductal right 0/6 6% lumpectomy Yes No
NP20 aGS 43 20 III ductal left 0/6 6% lumpectomy Yes Yes Luminal A
NP22 aGS 88 20 III ductal left 0/0 6% mastectomy Yes Yes Luminal A
A01 aGU 54 20 III ductal right 0/5 20% mastectomy Yes Yes Basal
A02 aGU 62 35 III comedo right 0/35 15% mastectomy No Yes ERRB21
A03 aGU 43 35 III ductal left 0/0 ND mastectomy No Yes ERRB21
A04 aGU 46 20 III ductal left 0/0 11% mastectomy Yes Yes Basal
A05 aGU 54 30 III medullar ND 14/15 30% mastectomy No Yes ERRB21
A06 aGU 74 40 III ductal left 0/17 10% mastectomy Yes Yes Basal
A07 aGU 55 40 III ductal right 0/0 1% mastectomy Yes Yes ERRB21
A10 aGU 71 30 III ductal left 0/0 54% lumpectomy Yes Yes Luminal A
A12 aGU 79 16 III ductal left 4/14 10% mastectomy No Yes Luminal A
A14 aGU 57 25 III ductal left 0/2 12% mastectomy Yes Yes ERRB21
A15 aGU 59 20 III ductal left 1/9 5% mastectomy No Yes ERRB21
A16 aGU 85 45 III comedo right 0/3 9% mastectomy Yes Yes ERRB21
A17 aGU 66 12 III lobular left 0/0 14% lumpectomy Yes Yes ERRB21
A18 aGU 62 12 II ductal right 0/10 23% lumpectomy Yes Yes Basal
A19 aGU 60 18 1 9 III ductal ND 0/ND 62% lumpectomy Yes Yes Basal
A20 aGU 57 8 III metaplastic right 0/0 17% lumpectomy Yes Yes ERRB21

ND, not determined; DGS, diploid genomic stable; AGS, aneuploid genomic stable; AGU, aneuploid genomic unstable.
The column ‘‘subtype’’ refers to the classification established from our analyses, not to the actual clinical subtype.
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stable (dGS), 15 tumors as aneuploid, yet genomic stable (aGS),
and 16 tumors belonged to the aneuploid and genomic unstable
(aGU) group of breast carcinomas. Examples of representative
histograms for each group are provided in Figure 1a–c. The degree
of genomic instability status was compared with grading using
the Pearson’s Chi-square test and with non-categorized parameters
(age, tumor size, number of lymph nodes with metastases, cyclin
A labeling index) using the Kruskall-Wallis test.

Immunohistochemistry

All slides were deparaffinized with xylene, rehydrated and
microwaved at 500W for 2 3 5 min in 10 mM citrate buffer, pH
6.0. Intrinsic peroxidase activity was blocked with 3% hydrogen
peroxide in methanol, followed by incubation with horse serum
(1:20 dilution) in 0.1 M PBS, pH 6.0. The levels of protein expres-
sion were revealed by overnight incubation with an antibody
against cyclin A (Dilution 1:100, Novocastra, Newcastle upon
Tyne, UK). The antibody was diluted in 1% (weight/volume) bo-
vine serum albumin and visualized by standard avidin biotin-per-
oxidase complex technique (Vector Laboratories, Burlingame,
CA). The cyclin A immunoreactivity was confined to the cell

nuclei. In each specimen, the cyclin A labeling index (i.e., the per-
centage of stained tumor cells) was calculated.

Comparative genomic hybridization

DNA was extracted from fresh frozen tissue using TRIzol.
CGH was performed as described in detail elsewhere (http://
riedlab.nci.nih.gov). Fluorescence intensity ratio plots were gener-
ated using Leica CW4000 Karyo V1.0 software (Leica Imaging
Systems, Cambridge, UK). Interpretation of changes at 1pter, 16,
19, and 22 required careful examination because these loci are
prone to artifacts due to the high proportion of repetitive sequen-
ces. CGH profiles of individual cases as well as the summary dis-
play of all cases can be found at http://www.ncbi.nlm.nih.gov/sky/
skyweb.cgi.

Microarray analysis

Total RNA was extracted using TRIzol (Invitrogen) followed
by Qiagen RNeasy column purification (Qiagen, Valencia, CA).
Sample RNA and universal human reference RNA (Stratagene, La
Jolla, CA) were then amplified for one round using RiboAmp
RNA Amplification Kit (Arcturus, Mountain View, CA). All

FIGURE 1 – Genomic instability in breast cancer: Examples of DNA histograms of diploid, genomically stable tumors (dGS) in (a), aneuploid,
yet genomically stable tumors (aGS) in (b), and aneuploid and genomically unstable (aGU) tumors in (c). Note the profound scattering of the
ploidy stemline in (c) (for details of the ploidy classification see Ref. 9 (d) Summary of genomic imbalances in 15 dGS (green), 12 aGS (red),
and 11 aGU (blue) breast carcinomas analyzed by comparative genomic hybridization. Bars on the left side of the chromosome ideogram denote
a loss of sequence in the tumor genome, while bars on the right side designate a gain. The width of the bars indicates the relative frequency of
gains and losses observed.
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amplified RNA samples were hybridized against amplified refer-
ence RNA using a slightly modified protocol from Hedge et al.18

Extraction and hybridization protocols used can be viewed in
detail at http://www.riedlab.nci.nih.gov. In brief, 3 lg of amplified
RNA was reverse transcribed using random primers and converted
into cDNA using reverse transcriptase. After incorporation of ami-
noallyl-conjugated nucleotides, the RNA was indirectly labelled
with Cy3 (tumor RNA) and Cy5 (reference RNA, Amersham, Pis-
cataway, NJ). Each sample was hybridized against the reference
RNA in a humid chamber (ArrayltTM Hybridization Cassette, Tel-
eChem Intl., Sunnyvale, CA) for 16 hr at 42�C, washed, and
scanned by the Axon GenePix 4000B Scanner (Axon Instruments,
Union City, CA). In order to account for potential amplification
bias, total RNA was hybridized following the same protocol for
11 samples (20 lg each). We used customized arrays obtained
from the National Cancer Institute’s microarray core facility.
Arrays were used from one print batch and composed of 9128
cDNAs denatured and immobilized on a poly-L-lysine-coated
glass surface. The gene annotation file (GAL file) used (Hs-
UniGEM2-v2px-32Bx18Cx18R.gal) can be found at the facilities
website http://nciarray.nci.nih.gov. GenePix software version
4.0.1.17 was used to apply the GAL file through an interactive
gridding process.19

Microarray quality assessment and data analysis
(2-group class comparison)

After discarding arrays that did not pass our quality assessment
criteria (Supp. Info., Section I), a total of 14 dGS samples, 14
aGS, and 16 genomically unstable (aGU) samples could be proc-
essed for further analysis. All values that did not meet the quality
control criteria were treated as missing values as described in Sup-
porting Information. Intensity ratios were calculated using the
background corrected median intensities that were normalized
with the locally weighted scatter plot smoother (LOWESS) algo-
rithm for each print-tip group. The fraction of data points used in
the local regression (f) was 0.1 and other parameters were adjusted
as suggested by Cleveland.20 The value of f was determined using
two self versus self experiments. All within-slide normalized
ratios were log-transformed (natural base). A total of 7,657 genes
were identified that did not show any missing values across all
samples. Out of those 7,657 genes, differentially expressed genes
were identified with pair-wise analysis: dGS against aGS, dGA
against aGU, and aGS against aGU samples.

In order to produce a robust gene list, we used 2 methods and
chose genes only when they appeared in both tests. First, we con-
ducted the Wilcoxon rank-sum test with a permutation test so that
if the p-value between the 2 groups was below 0.05, the values
were randomly labeled into these 2 groups and the p-value was
computed and repeated 10,000 times. All cases where the p-value
using permuted labels was under 0.05 were summed and divided
by the total number of Permutations (10,000). This a-value
denotes the probability that a gene had a smaller or equal signifi-
cance by random permutation than the original significance as
described earlier.21 Genes having a-value below 0.05 were con-
sidered to be differentially expressed. Second, we utilized a step-
wise gene selection procedure.22,23 The basic idea is to add genes
one by one to a set of genes that discriminates two classes of the
best using Fisher’s linear discriminant. The step-wise procedure
was stopped if the weight (that marks the separation of the ratios
between two classes) was less than 0.001. Finally, we took an
intersection of the genes that were statistically significant using
Wilcoxon test and also identified with the step-wise gene selection
procedure.

Biological pathway analysis

We used Ingenuity Pathways Analysis (IPA) software (Ingenu-
ity, Mountain View, CA) to assess the involvement of significantly
differentially expressed genes in known pathways and networks.
Differentially expressed genes as identified above were uploaded

into the program and defined as focus genes if they were also part
of the Pubmed-based IPA knowledge database. IPA was then used
to determine groups of genes—involving focus genes and those
known to interact with them—that together constitute networks.
Such networks indicate how the genes of interest may influence
each other above and beyond canonical pathways that are
described in the Kyoto Encyclopedia of Genes and Genomes
(KEGG, www.genome.jp/kegg). The IPA generated networks are
listed in a certain order, with the top networks having a lower like-
lihood that the generation of the networks was serendipitous.

Identification of a gene signature (also by multiple-class compari-
son) that defines genomic instability and prognostic validation

The approach for the identification of a genomic instability sig-
nature and its prognostic validation is described below. A more
detailed description is provided in Supporting Information, Sec-
tion II.

A supervised machine learning approach was applied in two
sample settings to identify a genomic instability signature from
the expression profiles of 7,657 genes in 44 primary breast cancer
samples. In the first setting, genes were selected to discriminate
genomically unstable (aGU) from genomically stable (aGS and
dGS) tumors as binary classification. Random forests (the Val-
SelRF package)24 in R25 were used in the gene selection. In ran-
dom forests, about one-third of the cases in the bootstrap sample
are not used in growing the tree. These cases are called ‘‘out-of-
bag’’ (OOB) cases and are used to evaluate the algorithm perform-
ance. A very important function of random forests is variable im-
portance evaluation. Specifically, the variable evaluation process
involves the following steps: (i) build a forest with 2,000 trees
based on all 7,657 genes and obtain the importance measure of
each gene variable; (ii) based on the variable importance rank
obtained in step 1, repeatedly remove 20% of the least important
genes from the sample data; (iii) in each iteration build a forest to
get the OOB error estimate with the remaining genes; and (iv)
select the gene set with the smallest OOB error rate. The classifi-
cation accuracy of the selected gene sets was evaluated with the
Random Committee algorithm in WEKA26 during leave-one-out
cross validation. Similar to Random Forests, Random Committee
is an ensemble algorithm of classification trees. The first setting
identified a 7-gene list. In the second setting, genes were selected
to discriminate aGU, aGS, and dGS as multi-classification. Simi-
larly, the random forests algorithm was used to identifiy a 70-gene
list, which generated the smallest OOB error rate in the feature
selection. Then, the Relief algorithm in WEKA26 was used to
select the top 10 genes from this 70-gene set. This 10-gene list
was able to further increase the classification accuracy of the 70-
gene set. The accuracy of the gene sets in classifying aGU, aGS,
and dGS was evaluated with the Naive Bayes algorithm in WEKA
during leave-one-out cross-validation. Among the 7- and 10-gene
sets, 5 genes were common. Therefore, these 2 gene lists were
merged as a 12-gene genomic instability signature (Fig. 2b). Eight
signature genes (marked with asterisks in Fig. 2b) were also
selected in the previous differential gene expression analyses, pro-
viding an external validation to these results. This 12-gene signa-
ture was used to group the 44 breast carcinomas in hierarchical
clustering analysis with CIMminer27 (Fig. 2). The gene expression
was aggregated based on Euclidean distance with average linkage.
The distance of the samples was computed based on correlation
and the cluster method was complete linkage.

To evaluate the accuracy of this genomic instability signature in
clinical outcome prediction, 496 tumor profiles in breast can-
cer4,6,11 were used as independent validation sets. The expression
measurements of the signature genes were identified from the
original microarray data with MatchMiner28 to predict disease-
free survival and overall survival. The average expression cent-
roids (profiles) of genomically stable patients and genomically
unstable patients in our data were computed. Each patient in the
validation cohorts was categorized into Genomically Stable (GS)
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group or aGU group based on the correlation of this patient’s gene
expression profiles with the average expression profiles of the GS
and aGU centroids in our data. In the external validation, patients
are classified as GS if the correlation of the gene expression with
the average GS centroid is higher than that with the average aGU
centroid. Similarly, they are classified as aGU if the correlation of
the gene expression with the average aGU centroid is higher that
with the average GS centroid. If there are multiple probes for the
same annotated gene, the average of the gene expressions for all
the probes is computed and used in the correlation analysis. The
survival probabilities of the GS group and the aGU group were
estimated by using Kaplan-Meier analyses with R. Statistical sig-
nificance of the difference between the survival curves for differ-
ent prognostic groups was assessed, using likelihood ratio tests
and log-rank tests.

Classification of tumors to breast cancer intrinsic subtypes

Tumor samples in our data were classified into five breast can-
cer intrinsic subtypes (basal, ERBB21, luminal A, luminal B, or
normal-like) using the method from Chin et al.29 Specifically, the
intrinsic gene list was downloaded from http://genome-www.
stanford.edu/breast_cancer/robustness/data.shtml. The common
genes in our data were identified by matching gene names. This
common gene subset was used to compute the average expression
profiles of each breast cancer subtype using 79 most tightly clus-
tered samples from Sorlie et al.11 Pearson’s correlation coefficient
was determined between each tumor sample and each breast can-
cer subtype. Each tumor sample was classified to the subtype that
has the highest correlation coefficient (p < 0.05). Detailed results
are provided in Supporting Information Table V.

Classification of genomic instability by using Oncotype
DX and MammaPrint

The signature genes in Oncotype DX12 and MammaPrint14,5

were identified in our data with MatchMiner.28 These two signa-
tures were used to predict genomic instability in our data by using
neural networks with WEKA, respectively. Leave-one-out cross
validation was used to evaluate the predicted results.

Microarray data will be available online in a MIAME compliant
format (http://www.riedlab.nci.nih.gov/).

Results

The degree of genomic instability, as measured by the nuclear
DNA content, directly impacts on a breast cancer patient’s prog-
nosis, independent from established parameters, such as lymph
node status, and in addition to other clinical and histomorphologi-
cal variables.7,8 Patients with tumors that are genomically stable
have a significantly better prognosis than those with unstable
tumors.9,10 We hypothesized that the profound differences
between genomically stable and unstable breast carcinomas would
reveal a measurable disparity in gene expression patterns as well.
We have therefore analyzed 48 breast carcinomas using gene
expression profiling on microarrays. In the present study, we
selected 17 diploid tumors that were genomically stable (dGS), 15
tumors that were assessed as aneuploid, yet stable (aGS), and 16
carcinomas that were classified as aneuploid with substantial vari-
ability in the nuclear DNA content, and were hence assigned to
the genomically unstable group (aGU); for details of the classifica-
tion system see Ref. 9. Representative histograms of these tumor
groups are displayed in Figure 1a-c, and the clinical data are sum-
marized in Table I. No significant differences were observed
among the three groups regarding patients’ age, tumor size and
number of lymph node metastases. However, a significant rela-
tionship existed between the degree of genomic instability and
cyclin A labeling index (p < 0.0001 by Kruskal-Wallis test; data
not shown). Moreover, tumors with high grade (Grade III) were
significantly more frequently found in the aGU group compared
with the dGS and aGS group (p < 0.0001 by Pearson’s Chi-square
test; data not shown). The higher degree of genomic instability in
the aGU group was also reflected in an increase in chromosomal
copy number changes as measured by comparative genomic
hybridization. A detailed summary and comparison of chromo-
somal aberrations between the 3 groups is presented in Figure 1d.
Chromosomal imbalances in the genomically stable tumors (dGS
and aGS) were mostly restricted to gains of chromosome 1q and
16p, accompanied by losses on chromosome 16q, while aGU
tumors showed more diverse changes, including frequent gain of
the long arm of chromosome 17, the mapping position of the
ERBB2 oncogene. This confirms earlier data from our group.30

Gene expression profiling using cDNA arrays

The similarity of the genomically stable groups (dGS and aGS),
when contrasted to the tumors classified as genomically unstable

FIGURE 2 – Principal Component Analysis (PCA) and Hierarchical Cluster Analysis of the gene expression data of the three classes of breast
carcinomas. (a). The PCA reflects pair-wise comparison of dGS (red dots) and aGU (green dots), which was then used to classify the third class
(aGS, blue). (b). The cluster analysis shows aggregation into two groups separating genomically stable (dGS and aGS) from unstable tumors
(aGU). The 12-gene genomic instability signature includes seven genes that were selected to classify genomically unstable (aGU) and stable
(dGS and aGS) tumors, and 10 genes were selected to discriminate all three groups. There are five common genes among the 7- and 10-gene
lists, namely, RERG, KIAA0882, cDNA DKFZp762M127, MYB, and STK15. The signature genes in red were over-expressed in genomically
unstable breast carcinomas, whereas the genes in green were under-expressed in genomically unstable tumors. Genes marked with asterisks
were also identified in the two-step differential expression analysis using Wilcoxon’s tests, attesting to the robustness of the signature.
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(aGU), was further underlined by the results of our gene expres-
sion profiles. These similarities of the gene expression patterns of
the two genomically stable groups, when compared with the
genomically unstable group, is presented pictorially in Figure 2a
as a Principal Component Analysis (PCA). The PCA was based on
the genes summarized in Supporting Information Table IA.
Applying the Wilcoxon test with permutation test and the step-
wise algorithm to identify differentially expressed genes for the
pair-wise comparisons of the three groups we show that 38 genes
were commonly differentially expressed for the comparisons aGU
versus dGS and aGU versus aGS, whereas only two genes were
commonly observed in the comparisons aGU versus aGS and aGS
versus dGS, and three genes among aGS versus dGS and aGU ver-
sus dGS (Table II). The gene lists that describe the exclusive dif-
ferences between all groups are listed in Supporting Information
Tables IA-C.

We were then interested in analyzing expression levels of genes
that are potential candidates for being involved in the control of
genetic stability. These genes include APC, BIRC5, BUB1, CDH1,
FRS3, RB1CC1, SMC1A (structural maintenance of chromosome),
ST7, AURKA, TP53, and the cyclins CCNA2, CCND1, CCND3,
and CCNE1. Several of these genes have been previously studied
by means of either quantitative RT-PCR or immunohistochemistry
in a comparable set of genomically stable and unstable
tumors.30,31 Five of these genes were significantly differentially
expressed when we compared the genomically stable (dGS and
aGS) and unstable (aGU) tumors. We confirmed the increased
expression of CCNA2 and CCNE1 in the unstable tumors, how-
ever, CCND1 was downregulated in this group. In addition, we
could show that both BIRC5, which prevents apoptosis, and
AURKA, a gene involved in centrosome duplication and genomic
instability, were significantly higher expressed in the genomically
unstable tumors (Supp. Info. Table II).

Functional annotation of the genes that discern the genomically
stable (dGS and aGS) from unstable (aGU) tumors using
ingenuity pathway analysis

Both, the CGH analyses and expression profiles suggest that
those tumors that were classified as genetically unstable differed
most from the genetically stable tumors, regardless of the actual
ploidy status (i.e., the position of the stemline which is at 2c in the
dGS, and different from 2c in the aGS group). We were therefore
interested to functionally annotate the differentially expressed
genes between the two groups (dGS and aGS versus aGU using In-
genuity Pathway Analysis (IPA) (Supp. Info. Table III). For no-
menclature of IPA please see Material and Methods section.

Thirty-eight genes were differentially expressed between the
aGU and the dGS/aGS subtypes, of which 33 were present as
focus genes. Four of these focus genes belonged to the highest
ranked network. The top ranked networks are characterized by a
low likelihood that the generation of the network was serendipi-
tous. Genes of this network are involved in cancer development,
cellular growth and proliferation and gene expression, whereas the
second network contained one focus gene. The top functions in
this network include cell-to-cell signaling and interaction, and cel-
lular assembly and organization.

Validation of the genomic-instability–dependent gene set
for prediction of disease-free survival and overall
survival in breast cancer

We were then interested in exploring to which extent the gene
expression signature that defines genomic instability in the breast
cancer samples analyzed here could be useful for prediction of dis-
ease outcome in previously published independent datasets. We
therefore first explored the differences between all 3 groups. Using
random forests, this classification generated a list of 70 genes. The
top 10 genes of this set selected with Relief were then used to indi-
vidually classify the 3 groups; this classification achieved an accu-
racy of 80%. Next, we used random forests to establish a gene list

that discerns the genomically stable (dGS and aGS) tumors from
the genomically unstable ones (aGU). In leave-one-out cross-vali-
dation, this 7-gene signature allowed classification of genomically
stable versus unstable tumors with an accuracy of 93%. The 7-
gene list and the 10-gene list showed an overlap of 5 genes. The
resulting two largely concordant signatures from both approaches
confirmed the relevance of the identified signature genes as
descriptors of genomic instability. Combining the 2 gene lists
therefore resulted in a 12-gene genomic instability signature list.
The classification of the samples into 2 major groups (genomically
stable and unstable) is shown as a Hierarchical Cluster analysis in
Figure 2b. Eight of those signature genes were identified also in
the previous two-step differential expression analyses (Wilcoxon
test and step-wise algorithm, discussed above), indicating con-
cordance despite different computational approaches. Among the
12-gene genomic instability signature, SCYA18, STK15, and
CDKN2A were over expressed in genomically unstable breast car-
cinomas, whereas the remaining 9 signature genes were under-
expressed in genomically unstable tumors (p < 0.001, two-sided t-
tests). This gene set was then used for predicting cancer outcomes
in independent datasets.

The breast cancer datasets that we used for validation purposes
were included in the publications by Sorlie et al.,11 van de Vijver
et al.,4 and Sotiriou et al.6 These datasets comprise gene expres-
sion profiles from 469 patients with heterogeneous histology and
different disease stages. The clinical parameters included tumor
grade, tumor size, lymph node status, estrogen receptor status, pro-
gesterone receptor status, age, and histology. The clinical end-
points used for the validation of the classifiers included relapse-
free survival, metastasis-free survival, disease-free survival (here
a disease event refers to either breast cancer relapse or metastasis)
and overall survival. Each patient in the three validation cohorts
was classified as being more similar to either the genomically sta-
ble signature (groups dGS and aGS) or the aGU signature, based
on the correlation of this patient’s gene expression pattern with
the average expression profiles of the genomically stable samples
(referred to as GS) and aGU samples in our dataset. Kaplan-Meier
analyses showed that the genomic instability-defined prognostic
groups were associated with a distinct relapse-free survival and
metastasis-free survival (p < 0.04, log-rank tests) in the patient
cohorts from Sorlie et al.,11 van de Vijver et al.,4 and Sotiriou
et al.6 Patients with the GS signature had longer relapse-free sur-
vival and metastasis-free survival than those with the aGU signa-
ture. Furthermore, the genomic-instability defined prognostic
groups had remarkably different overall survival in Kaplan-Meier
analyses (p < 0.025, log-rank tests), as shown in Figure 3, despite
the fact that about 50% of patients died without having suffered
from breast cancer recurrence.12

We then evaluated the association between genomic instability-
defined risk groups and traditional prognostic factors of breast
cancer, including lymph node status, tumor grade, the NIH con-
sensus criteria,32 and the St. Gallen criteria,33 which are based on
tumor size �1 cm (NIH low risk), and estrogen (positive) and/or
progesterone (positive) receptor status, tumor size (�2 cm), tumor
grade (Grade I), and patient age (�35 years) (St. Gallen low risk).
To investigate whether the 12-gene signature is independent of
lymph node status, the three external validation cohorts were com-
bined, and lymph node-negative patients and node-positive
patients were analyzed separately. In all studied lymph node-nega-
tive patients, the GS and the aGU groups had distinct disease-free
survival (p < 0.0002, log-rank tests) and overall survival (p <
0.0001, log-rank tests) in Kaplan-Meier analyses. Similarly, in all
lymph node-positive patients, the GS group and the aGU group
had remarkably different disease-free survival (p < 0.0007, log-
rank tests) and overall survival (p < 0.0001, log-rank tests). These
results indicate that the 12-gene genomic instability signature is
independent of lymph node status in breast cancer prognosis
(Fig. 4). We then investigated whether the 12-gene signature pro-
vides additional prognostic information within the high risk
groups defined by the NIH criteria and the St. Gallen criteria. In
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TABLE II – COMMONLY DIFFERENTIALLY EXPRESSED GENES FOR THE COMPARISONS OF DGS, AGS, AND AGU BREAST CARCINOMAS

Nr Incyte PD Gene name ENTREZ
Gene ID

Location Gene
function

Ratio
aGU/dGS

Ratio
aGU/aGS

a-value
aGU/dGS

a-value
aGU/aGS

Genes similar expressed for ‘‘aGU versus dGS’’ and ‘‘aGU versus aGS’’
1 62144 CCNE1—cyclin E1 898 19q12 Overexpression is known for many

tumors and results in chromosome
instability.

2.23 2.34 0.0479 0.0407

2 520342 EVL—Enah/Vasp-
like

51466 14q32.32 Cytoskeletal regulator activity and
cell surface receptor linked signal
transduction.

0.28 0.39 0.0478 0.0431

3 522991 SUSD3 203328 9q22.32 Sushi domain containing 3 0.27 0.35 0.0463 0.0405
4 606609 VAV3—vav 3

oncogene
10451 1p13.3 Function in signal transduction.

Deregulation leads to marked
cytoskeletal changes and cell
division alterations.

0.39 0.39 0.043 0.0459

5 644989 RERG—Ras-like 85004 12p13.1 Estrogen-regulated, growth inhibitor 0.32 0.26 0.0464 0.0482
6 690231 CCL18—chemokine

(C-C motif)
ligand 18

(pulmonary and
activation-
regulated)

6362 17q11.2 Chemotactic activity for naive T cells,
CD41 and CD81 T cells and
nonactivated lymphocytes. It may
play a role in humoral and cell-
mediated immunity responses.

4.25 6.34 0.0481 0.0439

7 1394835 HOOK2—hook
homolog 2

29911 19p13.13 Attachment to microtubules and
binding to organelles.

0.47 0.40 0.0464 0.0458

8 1453049 SCNN1A 6337 12p13 Sodium channel, nonvoltage-gated 1
alpha

0.25 0.20 0.0456 0.0402

9 1646030 PTD008 51398 19p13.13 PTD008 protein 0.47 0.46 0.0424 0.0465
10 1662893 C18orf1 753 18p11.2 Chromosome 18 open reading frame 1 0.40 0.37 0.0462 0.0432
11 1672574 PACE4—proprotein

convertase
subtilisin/kexin

type 6

5046 15q26 One of its substrates is the
transforming growth factor beta
related protein. This gene plays a
role in tumor progression.

0.36 0.37 0.0495 0.0452

12 1698713 ERBB3—v-erb-b2
erythroblastic
leukemia viral
oncogene

homolog 3 (avian)

2065 12q13 Encodes a member of the epidermal
growth factor receptor (EGFR)
family. Function in cell
proliferation or differentiation.
Amplification of this gene and/or
overexpression of its protein have
been reported also in breast tumors.

0.38 0.42 0.0457 0.0426

13 1711594 FOXA1—forkhead
box A1

3169 14q12–q13 HNF3alpha is amplified and
overexpressed in esophageal and
lung adenocarcinomas.

0.16 0.14 0.043 0.0443

14 1734634 NaN NaN 0.31 0.27 0.0491 0.0454
15 1749102 INDO-indoleamine-

pyrrole2,
3dioxygenase

3620 8p12–p11 Antiproliferative effect on many
tumor cells and inhibits
intracellular pathogens.

3.20 4.50 0.0464 0.0428

16 1755193 FLJ20366 55638 8q23.2 Hypothetical protein FLJ20366 0.32 0.30 0.0435 0.0476
17 1793853 ALCAM 214 3q13.1 Activated leukocyte cell adhesion

molecule
0.38 0.37 0.0478 0.0439

18 1808121 KIAA1324 57535 1p13.3–p13.2 0.31 0.30 0.0491 0.0478
19 1844691 ARMCX2 9823 Xq21.33–q22.2 Potential role in tumor suppression. 0.40 0.41 0.0455 0.0419
20 1861614 CREB3L4 148327 1q21.3 cAMP response element-binding

(CREB) proteins are transcription
activators.

0.41 0.42 0.0475 0.0463

21 1922038 SYT17 51760 16p13.11 Synaptotagmin XVII 0.40 0.37 0.0463 0.0416
22 1998428 AGR2—anterior

gradient 2
homolog

(Xenopus laevis)

10551 7p21.3 Involvement in differentiation,
associated with oestrogen receptor-
positive breast tumours and
interacts with metastasis gene
C4.4a and dystroglycan.

0.23 0.25 0.0437 0.0444

23 1998792 DNALI1 7802 1p35.1 Potential candidate for the immotile
cilia syndrome (ICS).

0.34 0.40 0.0448 0.0448

24 2026332 NaN NaN 0.25 0.30 0.0462 0.0447
25 2106441 ASAH1 427 8p22–p21.3 Mutations are associated with a

lysosomal storage disorder (Farber
disease).

0.33 0.32 0.0468 0.0452

26 2190664 KIAA0882 23158 4q31.21 Membrane-associated protein. 0.22 0.26 0.0495 0.0463
27 2230088 MGC18216 145815 15q26.3 Hypothetical protein MGC18216. 0.35 0.31 0.0463 0.0438
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van de Vijver et al.’s cohort,4 284 patients were defined as high
risk according to the NIH criteria, and 273 patients were defined
as high risk according to the St. Gallen criteria. In Sotiriou’s
cohort,6 93 patients were defined as NIH high-risk, and 91 patients
were defined as St. Gallen high-risk. Since tumor size was not
available in Sorlie’s cohort,11 patients could not be classified
according to the NIH criteria. All 75 patients in Sorlie’s cohort11

were high-risk according to St. Gallen criteria. In high risk
patients defined by the NIH criteria (n 5 377), those with the GS
signature had significantly better prognosis in terms of metastasis-
free survival (p 5 0.0001, log-rank tests) and overall survival
(p < 0.0001, log-rank tests) than those with the aGU signature
(Fig. 5a). Similarly, in the high risk patients defined by the St.
Gallen criteria (n 5 439), patients with the GS signature had sig-
nificantly better prognosis in terms of metastasis-free survival (p
< 0.0001, log-rank tests) and overall survival (p < 0.0001, log-

rank tests) than those with the aGU signature (Fig. 5a). Further-
more, the 12-gene genomic instability signature stratified Grade II
breast cancers (n 5 172) into subgroups with distinct relapse-free
survival (p 5 0.0001, log-rank tests) and overall survival (p 5
0.0001, log-rank tests) in Sorlie’s cohort and van de Vijver’s
cohort (Fig. 5b). Together, these results demonstrate that the 12-
gene genomic instability signature is independent of traditional
clinicopathologic factors used for breast cancer prognostication.

Linking breast cancer subtype-specific gene expression
signatures and signatures of poor prognosis with the
genomic instability classification

In the recent past, several comprehensive gene expression based
tumor profiling studies of large cohorts of breast cancer patients
identified specific subtypes, i.e., luminal A and B, basal,

TABLE II – COMMONLY DIFFERENTIALLY EXPRESSED GENES FOR THE COMPARISONS OF DGS, AGS, AND AGU BREAST CARCINOMAS (CONTINUED)

Nr Incyte PD Gene name ENTREZ
Gene ID

Location Gene
function

Ratio
aGU/dGS

Ratio
aGU/aGS

a-value
aGU/dGS

a-value
aGU/aGS

28 2242817 TFF3—trefoil
factor 3 (intesti-

nal)

7033 21q22.3 May protect the mucosa from
insults, stabilize the mucus
layer and affect healing of the
epithelium. Expressed in
goblet cells of the intestines
and colon.

0.34 0.17 0.048 0.0446

29 2366522 TMEM101 84336 17q21.31 Transmembrane protein 101 0.33 0.35 0.0478 0.0454
30 2555590 MYB 4602 6q22–q23 V-myb myeloblastosis viral

oncogene homolog
0.27 0.20 0.0482 0.0418

31 2591494 SELENBP1—
selenium
binding
protein 1

8991 1q21–q22 Effects of selenium in
preventing cancer and
neurologic diseases may be
mediated by selenium-
binding proteins.

0.41 0.34 0.0453 0.0451

32 2617968 ShrmL—shroom ShrmL 4q21.22 F-actin-binding protein 0.51 0.44 0.0469 0.0479
33 2708596 KIF13B 23303 8p12 Kinesin family member 13B 0.33 0.42 0.0463 0.045
34 2740665 NaN NaN 0.34 0.26 0.045 0.0431
35 2823476 STC2—

stanniocalcin 2
8614 5q35.1 Expression is induced by

estrogen and altered in some
breast cancers.

0.34 0.35 0.0441 0.0451

36 3094261 GREB1—
GREB1
protein

9687 2p25.1 Estrogen-responsive; plays
important role in hormone-
responsive tissues and cancer.

0.53 0.33 0.0487 0.0457

37 3123244 NaN 15q22.32 0.17 0.21 0.0487 0.042
38 4256950 NPHP1—

nephrono-
phthisis 1

4867 2q13 Signal transduction, cell-cell
adhesion, actin cytoskeleton
organization and biogenesis.

0.37 0.22 0.0469 0.0455

Genes similar expressed for ‘‘aGU versus dGS’’ and ‘‘aGS versus dGS’’
1 1596916 NOL4 8715 18q12 Nucleolar protein 4 2.78 2.13 0.0458 0.0434
2 2060823 S100P—S100

calcium
binding
protein P

6286 4p16 Regulation of cellular
processes such as cell cycle
progression and
differentiation.

2.36 2.77 0.0474 0.0479

3 2518249 AFF3—AF4/
FMR2 family,
member 3

3899 2q11.2–
q12

Tissue-restricted nuclear
transcriptional activator
preferentially expressed in
lymphoid tissue. May function
in lymphoid development and
oncogenesis.

0.21 0.43 0.046 0.044

Genes similar expressed for ‘‘aGU versus aGS’’ and ‘‘aGS versus dGS’’
1 2313368 MS4A1—

membrane-
spanning 4-
domains,

subfamily A,
member 1

931 11q12 Encodes a B-lymphocyte
surface molecule with
function in development and
differentiation of B-cells
into plasma cells.

0.43 3.44 0.0429 0.0478

2 3970665 NaN NaN 2.11 0.34 0.0469 0.0414

The a -value denotes the probability that a gene had a smaller or equal significance by random permutation than the original significance as
described earlier.21 Genes having a-value below 0.05 were considered to be differentially expressed.
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ERBB21, and normal-like.3,11,13,14 These subtypes were repro-
duced in several independent studies, and are associated with
distinct prognostic profiles. For instance, luminal A and normal-

like are associated with longer disease-free survival, whereas
patients with tumors classified as basal or ERBB21 fare worse.
We therefore speculated that the subtype-specific gene expression
signatures and our instability based classification systems were
linked, potentially pointing to overlapping biological mechanisms.
This potential connection was explored by using subtype-specific
gene expression signatures to classify our 48 samples. The results
reveal a remarkable concordance of these independent classifica-
tion systems. Of the 28 genomically stable tumors in our collec-
tion, 24 were assigned to subtypes luminal A (n 5 18) or normal-
like (n 5 6). Only four tumors were assigned to the ERBB21
group. In contrast, all but one genomically unstable tumor (n 5
16) was assigned to either the ERBB21 group (n 5 10) or the ba-
sal group (n 5 5), indicating pour prognosis (Table IIIA). Of note,
most of our genomically unstable tumors showed genomic ampli-
fication of chromosome arm 17q, the mapping position of the
ERBB2 oncogene (Fig. 1b).

We next explored whether other gene expression signatures
for breast cancer prognosis would allow classification of
genomic instability in our samples. Specifically, we used the 21-
gene signature of the so-called Oncotype DX assay (consisting of
16 cancer-associated genes and 5 genes included for normaliza-
tion purposes),12 and the 70-gene signature of the MammaP-
rint14,5 to predict genomic instability in the tumors in our series.
Twelve of the 21 genes used in the Oncotype DX test were pres-
ent on our platform, whereas 21 of the 70 genes employed by
MammaPrint1 could be utilized in our set. Using the Oncotype
DX gene set, overall prediction accuracy (measured as correct
classification of unstable tumors as unstable, and stable tumors
as stable) was 91%, whereas the MammaPrint1 set correctly
classified 84% of cases. These results are proof of the linkage
between genomic instability and poor prognosis in breast cancer
(Table IIIB).

In summary, our data show that, first, differences in the degree
of genomic instability among tumor groups are reflected in the
identified 12-gene signature. Second, this aneuploidy-specific
gene expression signature can reliably predict outcome in pub-
lished datasets, and, third, in turn, the gene expression signature of
poor prognosis, independent of the specific platform, predicts the

FIGURE 3 – Applying the 12-gene genomic instability signature for prediction of disease-free and overall survival in independent datasets
using Kaplan-Meier analyses. The curves in red reflect the genomically stable signature, the curves in green the one representative of genomic
instability. For all examples, we observed a statistically significant association of genomic instability with shorter disease-free and overall sur-
vival. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

FIGURE 4 – The 12-gene genomic instability signature quantified
breast cancer outcomes in Kaplan-Meier analyses independent of
lymph-node status in three different patient cohorts. The curves in red
reflect the genomically stable signature, the curves in green the one
representative of genomic instability. The signature of genomic insta-
bility was used to predict disease-free and overall survival in three
combined datasets. We observed a statistically significant association
with survival independent of lymph-node status. [Color figure can be
viewed in the online issue, which is available at www.interscience.
wiley.com.]
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degree of genomic instability with significant (p < 0.001) accu-
racy. Therefore, the three hypotheses that we postulated appear to
be valid ones.

Discussion

The prognosis of breast cancer depends on the pattern and
degree of genomic instability.7,8 Patients with breast carcinomas
with a relatively stable genome have considerably longer disease
free survival times compared with women with genomically unsta-
ble tumors.9,10 The degree of genomic instability can be consid-
ered a tumor-biological feature that defines different subtypes. In
general, this feature does not change over time, i.e., when malig-
nancy advances. This is also reflected by the fact that the average
tumor sizes of the dGS (22.5 mm), aGS (25.6 mm), and aGU
(25.4 mm) samples were not significantly different from each
other. Therefore, the degree of genomic instability is not just a

measure of tumor size and time of in vivo propagation. In order to
further elucidate the genetic basis of the strikingly different clini-
cal course of genomically stable versus unstable tumors, we were
interested in analyzing (i) whether we can identify aneuploidy spe-
cific global gene expression profiles, (ii) to which extent the
genomic instability-associated gene expression patterns would
allow the prediction of clinical outcomes in published breast can-
cer datasets and, (iii) lastly, we were curious as to whether the
gene expression signatures that define several breast cancer sub-
types and are associated with poor prognosis, namely those used
in Oncotype DX and MammaPrint1 would classify our samples.
In order to address these questions, we used quantitative measure-
ment of the nuclear DNA content, comparative genomic hybrid-
ization, and array-based gene expression profiling of 48 breast
cancer samples. The relevance of the genomic instability-specific
gene expression signature was then independently and comprehen-
sively validated using published datasets. The 12-gene genomic
instability signature predicted disease-free survival and overall
survival in breast cancer patients (n 5 469), independent of tradi-
tional prognostic factors.

The results of the CGH experiments revealed clearly different
patterns of genomic imbalances in the groups with a low versus
high degree of genomic instability, both in terms of the affected
chromosomes, and in terms of the frequency of chromosomal
gains and losses. The most common genomic gain was mapped to
the long arm of chromosome 1. This is consistent with previous
analysis from our own laboratory and with CGH results reported
in the literature using chromosome and array CGH.14,29,30,34–36

Additional frequent gains in the genomically stable tumors were
mapped to chromosome arms 16p (gains) and 16q (losses). The
aneuploid genomically unstable tumors showed additional gains
on chromosome arm 8q and 17q, which include the known onco-
genes MYC and ERBB2. Previous analyses using FISH probes for
these oncogenes are consistent with this finding.37 These observa-
tions, and in particular the fact that tumors with gains of chromo-
some 1q and losses on 16q were predominantly found in the
genomically stable group nicely supports findings by Chin et al.
and Bergamaschi et al., who could show that patients with tumors
with the ‘‘1q/16q’’ signature have longer disease-free survival

FIGURE 5 – Comparison of the 12-gene signature of genomic instability with other predictors of high-risk. The curves in red reflect the
genomically stable signature, the curves in green the one representative of genomic instability. (a) the 12-gene signature allows further stratifica-
tion of established high-risk signatures (the so called NIH and St. Gallen criteria). (b) Refinement of relapse-free and overall survival in two in-
dependent datasets using the 12-gene signature of genomic instability. In Grade II tumors, application of the 12-gene signature allowed for
improved prognostic classification. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

TABLE III – THE LINKAGE BETWEEN GENOMIC INSTABILITY AND
BREAST CANCER SIGNATURES OF POOR PROGNOSIS SUBTYPES

Luminal A Luminal B ERRB21 Basal Normal-like

dGS 9 0 1 0 4
aGS 9 0 3 0 2
aGU 1 0 10 5 0

Sensitivity
(genomically
unstable)

Specificity
(genomically

stable)

Overall
accuracy

Oncotype DX 13/16 (81%) 27/28 (96%) 91%
MammaPrint1 13/16 (81%) 24/28 (86%) 84%

Upper part: The concordance between genomic instability and
breast cancer subtypes (luminal A and B, normal-like, ERBB21, and
basal). The tumors labeled dGS and aGS comprise the genomically
stable groups, whereas those labeled aGU define the genomically
unstable group. Lower part: The prediction results of genomic insta-
bility by using Oncotype DX and MammaPrint1 using neural net-
works in leave-one-out cross validation.
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times compared to patients with more complex aberrations, such
as those that belonged to the genomically unstable groups in our
collection.14,29 In our patient cohort, 47% of the dGS, 33% of the
aGS and none of the aGU tumor samples showed this ‘‘1q/16q’’
pattern.

The conclusion that, based on the CGH analyses, the genomi-
cally stable tumors were more closely related, and different from
the unstable group, was corroborated by the gene expression
profiling data. There was a significant overlap of deregulated
genes between the genomically unstable aGU group on one side,
and the genomically stable dGS and aGS cases on the other.
Therefore, two groups emerged from these analyses, i.e., tumors
that were classified as genomically stable (dGS and aGS), and
those that are not (aGU, see also Fig. 1). Genes differentially regu-
lated between these groups mapped predominantly to pathways
that govern cancer development, cellular growth and proliferation
and gene expression. In previous analyses, we could show that
two genes involved in cell cycle progression, CCNA2 and CCNE1,
were expressed at higher levels in genomically unstable tumors,
which translated into reduced disease free survival times.9,31,38

These data were generated using either quantitative RT-PCR or
immunohistochemistry. Using array based gene expression profil-
ing as described here, we could confirm these results in this new,
extended dataset. The ratio of median expression values of
CCNA2 and CCNE1 in aGU versus aGS and dGS tumors is 1.88
(p 5 0.022) and 1.86 (p 5 6.68e-5), respectively. The inhibitor of
apoptosis, BIRC5, was also significantly higher expressed in the
unstable tumors associated with poor prognosis, which is intuitive.
It is tempting to speculate that unstable tumors express phenotypic
features of chromosome segregation errors, one of which are cen-
trosome amplifications. Indeed, we have shown recently that cen-
trosome aberrations are significantly correlated with the degree of
aneuploidy and in particular with the stemline scatter index.39 In
addition to CCNE1, which is involved in the control of centrosome
maturation and duplication,40 the serine/threonine kinase AURKA
plays an integral role in the maintenance of centrosome integ-
rity.41 Overexpression of AURKA in cell lines results in centro-
some amplification, genomic instability and aneuploidy. Of note,
the expression of AURKA was significantly increased in the
genomically unstable tumors compared to the stable groups (me-
dian ratio of 1.87, p 5 1.08e-8). This suggests that this gene plays
a major role in the development of aneuploidy in human breast can-
cer. Interestingly, members of the serine/threonine kinase family,
including AURKA, were also identified as upregulated in chromoso-
mally instable tumors by Carter et al. and so were members of the
cyclin and kinesin families.42 Two other genes prominently overex-
pressed in the genomically unstable tumors include CDKN2A (p16),
a cyclin-dependent kinase inhibitor that maps to the short arm of
chromosome 9, and SCYA18 (CCL18), a gene involved in immune
response. Interestingly, this gene maps to chromosome arm 17q,
which is commonly gained in the unstable tumors. RERG, an estro-
gen regulated growth inhibitor is downregulated in the unstable
tumors, and so are the transcriptional activator HNF3A (FOXA1),
the ankyrin repeat protein p28 (PSMD10), the nuclear RNA export
factor NXF1, and the oncogeneMYB.

Having established distinct difference between the genomically
stable and unstable tumors, including specific patterns of genomic
imbalances and sets of differentially expressed genes, we were
now eager to explore to which extent these differences would
allow prediction of the clinical course in published independent
datasets. Included were three datasets from patients with breast
cancer (n 5 469) for which different clinical endpoints were avail-
able.4,6,11 In three external validation sets, patients were classified
as belonging to either the GS signature or to the aGU signature,
based on the correlation with the average 12-gene GS and aGU
centroids (i.e., profiles) in our data. There are strong correlation
patterns with our GS and aGU centroids in the external validation
sets (Supp. Figs. 4–6), rendering a robust classification of genomi-
cally stable and unstable breast cancers in the validation cohorts.
Based on this direct mapping, our 12-gene signature reliably pre-

dicts disease-free survival and overall survival in breast cancer in-
dependently of traditional prognostic factors, including tumor
grade, lymph node status, and the St. Gallen and NIH consensus
criteria, suggesting inherent biological similarities between the pa-
rameters that define the classification systems.

The external validation sets used in this study consist of com-
pletely independent patient cohorts. The prognostic prediction
based on the 12-gene genomic instability signature employed the
‘‘gold standard’’ of validation schemes, i.e., an independent train-
ing set and a validation in multiple, non-overlapping datasets. Fan
et al.43 compared five breast cancer signatures, including Onco-
type DX,12 MammaPrint1,4,5 wound response predictor,44 intrin-
sic subtypes,3,11,13 and the ‘‘two-gene ratio’’45 using the cohort
from van de Vijver et al.4 This comparison represents an entirely
independent test set only for Oncotype DX and the ‘‘two-gene ra-
tio’’, whereas the remaining three signatures used part of the sam-
ples from van de Vijver’s cohort (n 5 295) in model development.
If the training samples were removed for testing these three signa-
tures, the resulting test dataset would be greatly reduced to fewer
than 147 samples and possibly as few as 72 samples.43 In this
evaluation, all five signatures except the two-gene ratio allowed
for prognostic categorization with respect to disease-free sur-
vival (log-rank p < 0.001) and overall survival (log-rank p <
0.001). Compared with these results in consideration of the bias
toward MammaPrint1, intrinsic subtypes, and wound response
predictor, our 12-gene genomic instability signature is as accu-
rate as Oncotype DX and could potentially be more accurate
than the other signatures in terms of predicting disease-free sur-
vival and overall survival in van de Vijver’s cohort. Notably,
our 12-gene genomic instability signature further stratified high
risk patients defined by the St. Gallen criteria into distinct prog-
nostic groups. These results suggest, upon further validation,
that the signature presented in this study could extend the prog-
nostic space of the current four concordant breast cancer signa-
tures46 by linking gene expression patterns with tumour inher-
ent genomic instability.

Several studies have generated evidence that primary breast
cancer can be stratified into specific subtypes, namely luminal A
and B, basal, normal-like, and ERBB1, based on gene expression
profiles.3,11,13,14 These subtypes are associated with a distinctly
different prognosis, with luminal A and normal-like showing sig-
nificantly prolonged disease free survival times, whereas the basal
and ERBB21 signatures indicate poor prognosis. It was therefore
intriguing to speculate that there would be concordance between
our genomically stable tumors and those characterized as luminal
A and normal-like. In order to address this question, we used the
subtype-specific gene expression signatures to classify our tumors.
The congruence was striking: 24 of 28 of the genomically stable
(i.e., good prognosis) tumors were identified as being either lumi-
nal A or normal-like, whereas 15 of 16 genomically unstable (i.e.,
poor prognosis) tumors belonged to either the basal or ERBB21
groups. Gain of chromosome 17q, on which ERBB2 resides, was
common in the genomically unstable tumors, hence supporting the
ERBB21 phenotype. This overlap points to a strong biological
relationship of the groups, and suggests that tumor inherent
genomic instability is a major determinant of prognosis. This of
course supports the wealth of data showing that measurement of the
nuclear DNA content by either image or flow cytometry contributes
to disease prognostications in patients with breast cancer.47

Currently, two prognostic gene signatures are in clinical use for
the management of patients with early stage primary breast can-
cer. Oncotype DX12 is applied for treatment stratification of node-
negative, estrogen receptor positive, and tamoxifen treated breast
cancer; and MammaPrint14,5 for node-negative breast cancer
patients under age 61 with tumor size less than 5 cm (stages I and
IIA). We were therefore eager to further explore whether the con-
cordance between gene expression signatures that define specific
breast cancer subtypes and genomic instability extents to the two
poor prognosis classification systems. We explored this by investi-
gating whether the 21-gene set of Oncotype DX and the 70-gene
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set of MammaPrint1 can stratify our samples as being genomi-
cally stable or unstable. The accuracy with which that was possi-
ble, i.e., 84% for the MammaPrint1 set and 91% for Oncotype
DX corroborated our interpretation of an interrelationship of these
different genetic predictors of disease outcome.

In summary, this study presents a systematic approach to
explore whether there is linkage between a tumor-inherent degree
of genomic instability, gene expression patterns, and clinical out-
comes. The results establish a firm association of genomic insta-
bility and breast cancer subtypes. The identified 12-gene aneu-
ploidy-specific signature is an independent predictor of clinical
outcome in breast cancer patients, suggesting an essential and
dominating role of genomic instability in cancer progression and
recurrence. Clinically used gene signatures of poor prognosis,
OncotypeDX and MammaPrint1, accurately predict the degree of
genomic instability in our dataset, thereby linking the classifica-
tion systems. Based on these results one could make the argument
that disease prognostication based on gene expression signatures

could be augmented by quantitative measurements of the nuclear
DNA content in diagnostic samples, including those acquired by
minimally invasive fine needle aspiration cytology.
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